ЭКОЛОГО-ГИДРОГЕОЛОГИЧЕСКОЕ ПРЕДПРИЯТИЕ

"ЭКОМОНИТОРИНГ"

СРЕДНЕУРАЛЬСКАЯ ГИДРОГЕОЛОГИЧЕСКАЯ ЭКСПЕДИЦИЯ

 

620014 г.Екатеринбург ул.Вайнера, 55 (Уралнедра), каб. 513

тел. 257-20-06, 219-39-08 факс 257-20-06

 

 

 

Главная страница

Наши заказчики

Вопрос / Ответ

Справочник

Полезные ссылки

 

Начало

 

2. Вещественный состав земной коры

 

Земную кору - верхнюю твердую оболочку Земли - слагают различные генетические типы горных пород (магматические, осадочные и метаморфические), состоящие из определенного сочетания минералов, в состав которых входят различные химические элементы.

 

2.1 Химический состав земной коры

 

Химические изменения в земной коре определяются преимущественно геохимической историей главных породообразующих элементов, содержание которых составляет свыше 1%. Вычисления среднего химического состава земной коры проводились многими исследователями как за рубежом (Ф. Кларк, Г.С. Вашингтон, В.М. Гольдшмидт, Ф.Тейлор, В. Мейсон и др.), так и в Советском Союзе (В.И. Вернадский, А.Е. Ферсман, А.П. Виноградов, А.А. Ярошевский и др.). Процентное содержание элемента от общей массы называют Кларком вещества.

Сопоставляя приведенные данные, видно, что земная кора больше чем на 98% сложена О, Si, Al, Fe, Mg, Ca, Na, К, при этом свыше 80% составляют кислород, кремний и алюминий (табл. 2.1). Особенно высоко содержание кислорода, поэтому В.М. Гольдшмидт называет земную кору оксисферой, или кислородной оболочкой Земли.

 

Таблица 2.1

Состав земной коры в маc. % (по А.А. Ярошевскому, 1988)

 

Химические элементы

Содержание элементов

Кислород, O

47,90

Кремний, Si

29,50

Алюминий, Al

8,14

Железо, Fe

4,37

Кальций, Ca

2,71

Натрий, Na

2,01

Калий, K

2,40

Магний, Mg

1,79

Титан, Ti

0,52

Углерод, C

0,27

Водород, H

0,16

Марганец, Mn

0,12

Сера, S

0,10

 

2.2 Минералы

 

Минералы - это «природные физически и химически индивидуализированные тела, возникающие в земной коре в результате физико-химических процессов без какого-либо специального вмешательства человека в эти процессы» (Н.А. Смолянинов).

Минералами называются природные химические соединения или отдельные химические элементы, возникшие в результате физико-химических процессов, происходящих в Земле. В земной коре минералы находятся преимущественно в кристаллическом состоянии, и лишь незначительная часть - в аморфном. Свойства кристаллических веществ обусловливаются как их составом, так и внутренним строением, т.е. кристаллической структурой. В кристаллических решетках расстояния между элементарными частицами и характер связей между ними в разных направлениях неодинаковы (рис. 2.1), что обусловливает и различие свойств. Такое явление называется анизотропией или неравносвойственностью кристаллического вещества. Анизотропия кристаллических веществ проявляется во многих их особенностях. Например, в способности кристаллического вещества самоограняться, т.е. образовывать многогранники - кристаллы, форма кристаллов разнообразна и зависит, прежде всего, от внутреннего строения данного соединения.

 

2.3 Кристаллография

 

Рождение кристаллографии как науки связывают с именем Николая Стенона, который в 1669 году сформулировал закон постоянства углов: «Кристаллы различной формы одного и того же вещества (минерала) имеют неизменные углы между соответствующими гранями».

Симметрия - наиболее общая закономерность, связанная со строением и свойствами кристаллического вещества. Она является одним из обобщающих фундаментальных понятий физики и естествознания в целом. Е.С. Федоров (1901 г.) дал определение симметрии: «Симметрия есть свойство геометрических фигур повторять свои части, или, выражаясь точнее, свойство их в различных положениях приходить в совмещение с первоначальным положением». Таким образом, симметричным является такой объект, который может быть совмещен сам с собой определенными преобразованиями: поворотами или (и) отражениями.

Кристалл имеет вершину, ребро и грань В кристалле выделяются ось, центр и плоскость симметрии (рис. 2.1).

 

Симметрия кристаллов

Рис. 2.1  Симметрия кристаллов: 1-центр симметрии (С); 2-плоскость симметрии (P); 3-ось симметрии (L)

 

Плоскость, ось и центр симметрии находятся во взаимной связи, и сочетания их весьма ограничены. Известно 32 комбинации элементов симметрии. Сравнивая кристаллы между собой, мы увидим различия во взаимном расположении координатных осей, развитии кристалла в направлении каждой оси. Все разнообразие форм кристаллов минералов можно разделить на 7 крупных подразделений, которые называются сингониями (греч. «син» - сходно, «гония» - угол) (табл. 2.2). Оси симметрии проходят через центр симметрии (С) кристалла. Число совмещений при вращении кристалла на 360º вокруг оси симметрии называют порядком оси. Доказано, что в кристаллах возможны оси L2, L3, L4, L6 порядков. Осей 5 и более 6 в кристаллах не бывает.

Сингонию кристалла определяют по обязательному для каждой сингоний элементу симметрии. В кристаллах кубической сингоний обязательно присутствуют четыре оси третьего порядка (4L3), в гексагональной сингоний - одна ось L6, тетрагональной - L4, тригональной - L3, в ромбической и моноклинной выделяют элементы симметрии - L2PC, в триклинной - С (или нет элементов симметрии).

 

Таблица 2.2

Кристаллографические сингонии

 

Сингония

Характерные особенности

Примеры

Триклинная

Грани неравные, оси пересекаются под косым углом,

кристаллы несимметричны

Альбит

Моноклинная

Три неравные оси, из которых две перпендикулярны друг другу,

а третья наклонена, кристаллы перекошены

Ортоклаз, авгит, слюда, гипс, роговая обманка

Ромбическая

Три оси неравной длины, пересекающиеся под прямыми углами

Топаз, сeра, оливин

Гексагональная

Три равные оси в одной плоскости, пересекающиеся под углом 120°, и четвертая ось

перпендикулярная этой плоскости (шестигранная призма, пирамида, дипирамида)

Берилл, апатит, кварц, кальцит, турмалин

Тетрагональная

По двум горизонтальным осям кристалл развит одинаково (оси равные),

а по вертикальной оси резко отличается

Рутил, циркон, халькопирит, касситерит

Кубическая

Три оси одинаковой длины, пересекающиеся под прямым углом

Галит, флюорит, галенит, пирит, гранат, алмаз

 

2.4 Физические свойства минералов

 

Кристаллические формы минералов обладают анизотропией. Анизотропия свойств кристалла выражается и в том, что по непараллельным направлениям на одной и той же грани свойства у него разные. Степень анизотропности кристаллов зависит от их симметрии. Проявление анизотропии можно рассмотреть на примере минерала графита, внутренняя структура которого приведена на рис. 2.2, б. Расстояние между атомами углерода в пределах плоских слоев решетки составляет 0,14 нм (1,42 А), между слоями оно больше - 0,33 нм (3,39 А). Это объясняет способность графита легко расщепляться (весьма совершенная спайность) на тонкие листочки, параллельные слоям решетки, и с трудом ломаться по неровным поверхностям в других направлениях, где расстояния между частицами и силы сцепления между ними больше. Алмаз не обладает такими свойствами в силу иной кристаллической решетки (рис. 2.3, а).

 

Кристаллические решетки

Рис. 2.2  Кристаллические решетки: а - алмаза (С), б - графита (С)

 

В аморфных веществах закономерность в расположении частиц отсутствует. Свойства их зависят только от состава и во всех направлениях статистически одинаковы, т.е. аморфные вещества изотропны или равносвойственны. Прежде всего, это выражается в том, что аморфные вещества не образуют кристаллов и не обладают спайностью.

Морфология кристаллов минералов может явиться важным диагностическим признаком, хотя следует отметить, что в природе один и тот же минерал в разных условиях образует кристаллы различной формы, а разные минералы могут давать одинаковые кристаллы. Отметим лишь некоторые данные кристаллографии, используемые ниже при характеристике минералов. Все разнообразие форм кристаллов минералов удается разделить на шесть крупных подразделений, называемых сингониями. Сингонии отражают степень симметричности кристаллов. Выделяют сингонии: кубическую, объединяющую наиболее симметричные кристаллы, которые имеют несколько осей симметрии высшего порядка; гексагональную (с тригональной подсингонией), кристаллы которой имеют одну ось шестого или третьего порядка; тетрагональную - кристаллы имеют одну ось четвертого порядка.

Цвет - важный признак минералов, который, однако, можно использовать лишь в совокупности с другими свойствами. Окраска минерала определяется его химическим составом (основным и примесями), структурой, механическими примесями и неоднородностями. В связи с этим один и тот же минерал может иметь различную окраску, а разные минералы бывают окрашены в одинаковый цвет. Цвет минерала может осложняться интерференцией света в его поверхностных частях, что вызывает, например, появление серых, синих и зеленых переливов у Лабрадора (явление иризации). Описывая минерал, следует стремиться к возможно более точному определению цвета. Если в одном куске минерала цвет изменяется, необходимо указать характер смены окраски.

Для непрозрачных и сильно окрашенных слабопрозрачных минералов важным диагностическим признаком является цвет минерала в порошке, или цвет черты. Он может быть и таким же, как в куске (см. магнетит), но может от него отличаться (см. пирит). У прозрачных и большинства просвечивающих минералов порошок белый или слабо окрашенный. Для определения цвета порошка минералом проводят по шероховатой поверхности фарфоровой пластинки, называемой бисквитом, на которой остается черта, соответствующая цвету порошка; если твердость минерала больше твердости бисквита, на последнем остается царапина.

Прозрачность - характеризующая способность минерала пропускать свет, зависит от его кристаллической структуры, а также от характера и однородности минерального скопления. По этому признаку выделяют минералы: непрозрачные, не пропускающие световых лучей; прозрачные, пропускающие свет подобно обычному стеклу; полупрозрачные или просвечивающие, пропускающие свет подобно матовому стеклу; просвечивающие лишь в тонкой пластинке. Агрегаты многих минералов на глаз кажутся непрозрачными.

Блеск зависит от показателя преломления минерала и от характера отражающей поверхности. Выделяют минералы с металлическим блеском, к которым относятся непрозрачные минералы, имеющие темноокрашенную черту. Блеск, напоминающий блеск потускневшего металла, называют металловидным (полуметаллическим). Значительно более обширную группу составляют минералы с неметаллическим блеском, к разновидностям которого относятся: алмазный, стеклянный, жирный, перламутровый, шелковистый, восковой и, в случае отсутствия блеска, матовый.

Излом определяется поверхностью, по которой раскалывается минерал. Она может напоминать ребристую поверхность раковины - раковистый излом, может иметь неопределенно-неровный характер - неровный излом. В мелкозернистых агрегатах определить излом отдельных минеральных зерен не удается; в этом случае полезно описать излом агрегата - зернистый, занозистый или игольчатый, землистый.

Спайность - способность кристаллических минералов раскалываться по ровным поверхностям - плоскостям спайности, соответствующим направлениям наименьшего сцепления частиц в кристаллической структуре минерала. В зависимости от того, насколько легко образуются сколы по плоскостям и насколько они выдержаны, выделяют различные степени спайности: весьма совершенная - минерал легко расщепляется на тонкие пластинки, совершенная - минерал при ударе раскалывается по плоскостям спайности, средняя спайность - при ударе минерал раскалывается как по плоскостям, так и по неровному излому; несовершенная спайность - на фоне неровного излома лишь изредка образуются сколы по плоскостям; весьма несовершенная спайность - всегда образуется неровный или раковистый излом. Спайность может быть выражена в одном, двух, трех, реже четырех и шести направлениях. Если спайность выражена в нескольких направлениях, необходимо определить взаимное расположение плоскостей спайности, оценивая приблизительно угол, образуемый ими.

Твердость - способность противостоять внешнему механическому воздействию - важное свойство минералов. Обычно в минералогии определяется относительная твердость путем царапанья эталонными минералами поверхности исследуемого минерала: более твердый минерал оставляет на менее твердом царапину. В принятую «шкалу твердости» (табл. 2.4). входят десять минералов, расположенных в порядке увеличения твердости: первый минерал - тальк - обладает самой низкой твердостью, принятой за единицу (1), последний - алмаз - имеет самую высокую твердость, принятую за десять (10). Для определения твердости минералов можно пользоваться некоторыми распространенными предметами, твердость которых близка к твердости минералов - эталонов. Так, твердостью 1 обладает графит мягкого карандаша; около 2-2,5 - ноготь; 4 - железный гвоздь; 5 - стекло; 5,5-6 - стальной нож, игла. Более твердые минералы встречаются редко.

 

Таблица 2.4

Шкала твердости минералов Мооса - последующий царапает предыдущий

 

Минерал

Формула

Твердость

Тальк

Mg3(OH)2[Si4O10]

1

Гипс

CaSO4*H2O

2

Кальцит

СаСО3

3

Флюорит

CaF2

4

Апатит

Ca5(4)3[F,Cl,OH]

5

Ортоклаз

K[AlSi3O8]

6

Кварц

SiO2

7

Топаз

Al2(F,OH)2[SiO4]

8

Корунд

А12O3

9

Алмаз

С

10

 

Для каждого минерала характерна более или менее постоянная плотность (г/см3). Для минералов, в состав которых входят тяжелые металлы, высокая плотность является существенным диагностическим признаком. При определении минералов надо фиксировать все перечисленные выше свойства, так как только их комплекс может дать правильный результат. Некоторым минералам присущи особые свойства, облегчающие их определение. Например, арсенопирит при ударе издает чесночный запах.

В различных физико-химических условиях вещества одинакового химического состава могут приобретать разное внутреннее строение, а следовательно, и разные физические свойства и создавать разные минералы. Это явление называется полиморфизмом (греч. «поли» - много). В качестве яркого примера полиморфизма можно назвать две модификации углерода (С): упомянутый минерал графит и минерал алмаз. Внутренняя структура алмаза резко отличается от строения графита (рис. 2.2). В структуре алмаза сцепления между атомами углерода однотипны и прочны. Отсюда вытекают и свойства алмаза (С), резко отличные от свойств графита (С): низкие твердость - 1 и плотность - 2,1-2,3 графита и высокие - у алмаза, соответственно 10 и 3,5.

Важным свойством кристаллических веществ, обусловленным внутренним строением, является также его физическая однородность, выражающаяся в том, что любые части кристаллического вещества в одинаковых направлениях обладают одинаковыми свойствами, т.е. если кристалл графита в одном направлении имеет весьма совершенную спайность, то и любой его обломок в том же направлении обладает этим свойством.

Формы нахождения минералов в природе разнообразны и зависят главным образом от условий образования. Это либо отдельные кристаллы или их закономерные сростки (двойники), либо четко обособленные минеральные скопления, либо, чаще, скопления минеральных зерен - минеральные агрегаты.

Отдельные изолированные кристаллы и кристаллические двойники, т.е. закономерные сростки кристаллов, возникают в благоприятных для роста условиях. Форма кристаллов разнообразна и отражает как состав и внутреннюю структуру минерала, так и условия образования. Двойниками называются закономерные сростки кристаллов. Законы двойникования разнообразны, что приводит к формированию морфологически различных двойников.

Среди обособленных минеральных скоплений наиболее часто встречают друзы, представляющие скопления кристаллов, приросших к стенкам пещер или трещин. Секреции - результат постепенного заполнения ограниченных пустот минеральным веществом, отлагающимся на их стенках. Они имеют обычно концентрическое строение, отражающее стадийность формирования. Мелкие секреции называются миндалинами, крупные - жеодами. Конкреции - более или менее округлые образования, возникшие путем осаждения минерального вещества вокруг какого-либо центра кристаллизации. С этим часто связано концентрическое или радиально-лучистое строение конкреций. Мелкие округлые образования обычно концентрического строения называются оолитами. Их возникновение связано с выпадением минерального вещества в подвижной водной среде. Натечные образования, осложняющие поверхности пустот, возникают при кристаллизации минерального вещества из просачивающихся подземных вод. Натеки, свисающие со сводов пустот, называются сталактитами, растущие вверх со дна пещер - сталагмитами. На поверхности трещин могут развиваться плоские минеральные пленки, имеющие разное строение.

Встречаются минеральные образования, состав которых не соответствует форме, которую они слагают. Это так называемые псевдоморфозы (греч. «псевдо» - ложный). Они возникают при химических изменениях ранее существующих минералов или заполнении пустот, образовавшихся при выщелачивании каких-либо минеральных или органических включений. К первым относятся, например, часто встречающиеся псевдоморфозы лимонита по пириту, когда кубические кристаллы пирита (FeS2) превращаются в скрытокристаллический лимонит, ко вторым - псевдоморфозы опала по древесине и др.

 

2.5 Классификация минералов и их описание

 

Количество известных в настоящее время минералов превышает 2000. Их можно группировать по разным признакам. В основе принятой в настоящее время классификации минералов лежат химический состав и структура. Рассмотрим лишь наиболее широко распространенные минералы, принадлежащие к классам самородных элементов, сульфидов, галоидных соединений, оксидов и гидроксидов, карбонатов, сульфатов, фосфатов и силикатов.

Класс самородных элементов. Графит С связан преимущественно с процессами метаморфизма. Широко применяется в металлургии, для производства электродов и др. К этому же классу относятся такие ценные минералы, как алмаз, золото, платина и др.

Класс сульфидов. Галенит, или свинцовый блеск PbS, встречается в виде кристаллических агрегатов, реже - отдельных кристаллов и их сростков. Сингония кубическая. Цвет свинцово-серый; черта серовато-черная, блестящая; блеск металлический; непрозрачный; спайность совершенная в трех взаимно перпендикулярных направлениях, т.е. параллельно граням куба; твердость 2,5; плотность 7,5.

Сфалерит, или цинковая обманка ZnS, встречается в виде кристаллических агрегатов, реже сростков кристаллов кубической сингонии. Цвет бурый, редко бесцветный, с примесями железа, бывает окрашен в черный; черта желтая, бурая; блеск алмазный, металловидный; просвечивает; спайность совершенная в шести направлениях параллельно граням ромбического додекаэдра; твердость 3,5-4; плотность около 4.

Месторождения галенита и сфалерита, руд, свинца и цинка многочисленны, например, на Северном Кавказе, в Средней Азии, Забайкалье.

Пирит FeS2 является одним из наиболее распространенных минералов класса сульфидов. Образует агрегаты разной зернистости, часто встречаются вкрапленные в породы кубические кристаллы, несущие на гранях штриховку. Цвет золотисто-желтый; черта черная, зеленовато-черная; блеск металлический; излом неровный; спайность весьма несовершенная; твердость 6-6,5; плотность около 5. Используется для изготовления серной кислоты.

Происхождение минералов класса сульфидов связано, главным образом, с гидротермальными растворами. Они часто встречаются в кварцевых жилах вместе со многими минералами класса самородных элементов.

Класс галоидных соединений. К нему относятся минералы, представляющие соли фтористо-, бромисто-, хлористо-, йодистоводородных кислот. Наиболее распространенными минералами этого класса являются хлориды, образующиеся главным образом при испарении вод поверхностных бассейнов. Известны выделения хлоридов и из вулканических газов.

Галит NaCI - образует плотные кристаллические агрегаты, реже кристаллы кубической формы. Чистый галит бесцветный или белый, чаще окрашен в различные светлые цвета; блеск стеклянный; прозрачный или просвечивает; спайность совершенная в трех взаимно перпендикулярных направлениях, т.е. параллельно граням куба; твердость 2; плотность около 2. Гигроскопичен, соленый на вкус. Используется в пищевой промышленности, в химической для получения хлора, натрия и их производных. Основные месторождения находятся на Урале, в Донбассе и во многих других местах.

Сильвин КСl - близок по происхождению и по физическим свойствам к галиту, с которым часто образует единые агрегаты. Отличительный признак - горько-соленый вкус. Применяется в основном как сырье для калийных удобрений, в химической промышленности.

Фториды связаны преимущественно с гидротермальными, а также с магматическими и пневматолитовыми процессами (греч. «пневма» - дух, газ). В экзогенных условиях образуются редко. К ним относится флюорит, или плавиковый шпат - CaF2, встречающийся в виде зернистых скоплений, отдельных кристаллов и их сростков. Сингония кубическая. Цвет разнообразный, часто меняющийся в одном кристалле от бесцветного к желтому, зеленому, голубому, фиолетовому; блеск стеклянный; спайность совершенная в четырех направлениях параллельно граням октаэдра; твердость 4; плотность 3,18. Используется в металлургической, химической, керамической промышленности, прозрачные разновидности - в оптике. Основные месторождения в Забайкалье и в Средней Азии.

Класс оксидов и гидроксидов. По количеству входящих в него минералов занимает одно из первых мест: на его долю приходится около 17% всей массы земной коры. Из них около 12,5% составляют оксиды кремния и 3,9% - оксиды железа. Минералы этого класса образуются как в эндогенных, так и в экзогенных условиях.

Кварц SiO2 - широко распространенный в земной коре породообразующий минерал. Основой его структуры является кремнекислородный тетраэдр, в вершинах которого располагаются ионы кислорода, а в центре - ион кремния. Соединение тетраэдров осуществляется через вершины так, что каждая вершина одного тетраэдра служит вершиной смежного с ним тетраэдра, образуя структуру прочного трехмерного каркаса, аналогичную каркасной структуре силикатов (см. ниже). Кварц встречается в виде зернистых агрегатов, плотных масс, зерен в породах, в пустотах образует кристаллы и их сростки. Кристаллы имеют сложную форму, основой которой является шестигранная призма, оканчивающаяся ромбоэдрами. Грани призмы часто несут тонкую поперечную штриховку. Сингония гексагональная (подсингония тригональная). Цвет разнообразный - бесцветный, белый, серый, встречаются окрашенные разности. Окраска лежит в основе выделения разновидностей кварца: горный хрусталь - бесцветные прозрачные кристаллы; дымчатый кварц - серо-дымчатые, бурые; аметист - фиолетовые кристаллы; морион - черные и др.; просвечивает, реже прозрачен; блеск на гранях стеклянный, на изломе - жирный; излом раковистый или неровный; спайность весьма несовершенная; твердость 7; плотность 2,65.

Кварц выделяется при кристаллизации магмы, выпадает из горячих растворов и паров, возникает в процессе метаморфизма. В экзогенных условиях образуется редко. Химически устойчив в любых условиях.

Широко распространены минералы на основе SiO2. Халцедон - скрытокристаллический минерал, опал SiO2.nH2O - аморфный минерал. Используется в ювелирном деле как поделочный камень, в строительстве как абразивный материал.

Легко встретить в природе минералы оксида железа. Гематит, или железный блеск Fe2О3, образует плотные мелкокристаллические агрегаты чешуйчатого строения, скрытокристаллические массы (красный железняк), а также желваки (конкреции) радиально-лучистого или скорлуповатого строения. Сингония гексагональная, подсингония тригональная. Цвет от желто-серого, стально-серого и почти черного у кристаллических разностей до темно-красного у скрытокристаллических; цвет черты от красно-бурого до вишнево-красного; непрозрачный; блеск от металлического до матового; твердость 5,5-6; плотность - 5,2.

Магнетит, или магнитный железняк FeО·2О3, или FeFe2О4, обычно образует плотные кристаллические агрегаты. Сингония кубическая. По свойствам напоминает кристаллическую разновидность гематита, но отличается от него черным цветом черты и магнитными свойствами.

Образование гематита и магнетита связано главным образом с эндогенными процессами - магматическими, гидротермальными и метаморфическими. Гематит может возникать и в экзогенных условиях (при выветривании, в морской среде). Месторождения руд, связанных с этими минералами, широко распространены на Урале (Курская магнитная аномалия) и других местах.

Лимонит, или бурый железняк - это, строго говоря, не минерал определенного состава, а агрегат близких минералов - гётита FeOOH, гидрогётита FeOOH.nН2О, лепидокрокита FeO(OH) и глинистых частиц, соотношения которых непостоянны. Лимонит образует плотные натечные или землистые рыхлые массы, конкреции и оолиты. Часто можно наблюдать в одном образце переходы плотных разностей в рыхлые. Цвет у рыхлых разностей охристо-желтый, у плотных - черный; черта соответственно желто-бурая или бурая; твердость 1-5; плотность 2,7-4,3. Образование лимонита связано с выветриванием железосодержащих минералов, а также с выпадением из поверхностных вод, причем в этом процессе большую роль играют микроорганизмы. Наиболее крупные месторождения лимонита на Керченском полуострове и Северном Кавказе.

Ценным полезным ископаемым на алюминий является боксит, представляющий собой, подобно лимониту, агрегат минералов - оксидов и гидроксидов алюминия: диаспора АlOOН, гидраргиллита Аl(ОН)3, бемита АlO(ОН) с примесью оксидов железа, оксида кремния и др. Встречаются в виде землистых рыхлых или твердых масс, часто образуют оолитовые скопления. Цвет белый, серый, желтый, чаще красный, буро-красный; твердость 2-4. Образуются при выветривании горных пород, которые богаты минералами, содержащими алюминий, и при последующем переотложении продуктов выветривания. Основные месторождения найдены на Северном Урале, в Ленинградской области, в Сибири.

Класс карбонатов. Для минералов этого класса характерна реакция с соляной кислотой, сопровождающаяся выделением углекислого газа. Интенсивность реакции помогает различать минералы - карбонаты, близкие по многим свойствам. Они часто светлоокрашенные, со стеклянным блеском; твердостью 3-4,5; спайностью совершенной в трех направлениях, параллельных граням ромбоэдра. Рассматриваемые ниже минералы кристаллизуются в тригональной подсингонии. Образование карбонатов связано главным образом с поверхностными химическими и биохимическими процессами, а также с метаморфическими и гидротермальными.

Кальцит, или известковый шпат Са(СО3), - один из наиболее распространенных в земной коре минералов, участвующих в строении как осадочных, так и метаморфических пород. Встречается в виде кристаллических и скрытокристаллических агрегатов различной плотности, в пустотах в виде разнообразных натечных форм, кристаллов и их сростков. Цвет разнообразный - от бесцветного и белого, изредка до черного; блеск стеклянный, на отдельных участках перламутровый; прозрачный или просвечивающий. Бесцветные прозрачные кристаллы кальцита, обладающие двулучепреломлением, называются исландским шпатом. Твердость - 3; плотность - 2,7; бурно реагирует («вскипает») при взаимодействии с соляной кислотой. Применение разнообразно: в строительстве, в металлургической и химической промышленностях, как поделочный камень, исландский шпат - в оптике. Месторождения многочисленны.

Доломит CaMg(СO3)2 - распространенный минерал, образующий кристаллические и землистые агрегаты. От кальцита отличается несколько большей твердостью 3,5-4 и плотностью - 2,9, а главное, реакцией с соляной кислотой, которая идет только с порошком доломита. Используется в металлургии и строительстве.

Реже встречается сидерит (СО3), слагающий кристаллические и землистые агрегаты, образующий округлые конкреции и оолиты. Цвет желтовато-белый, буровато-серый; твердость 3,5-4,5; плотность - 4. Реагирует только с подогретой соляной кислотой. Является важной железной рудой. Крупные месторождения известны на Южном Урале.

Класс сульфатов. Минералы класса сульфатов осаждаются в поверхностных водоемах, образуются при окислении сульфидов и серы в зонах выветривания, реже связаны с вулканической деятельностью.

Ангидрит Ca(SO4) образует плотные мелкокристаллические скопления. Сингония ромбическая. Цвет белый, часто с голубым или серым оттенком; блеск стеклянный, перламутровый; прозрачен, чаще просвечивает; спайность совершенная в одном направлении и средняя в двух, расположенных под углом 90º; твердость - 3,5; плотность - 3,0. Используется для производства цемента, для поделок. Крупные месторождения обнаружены на Украине.

Наиболее распространенным минералом класса сульфатов является гипс Ca(SO4).2H2O, встречающийся в виде мелкокристаллических и землистых агрегатов, отдельных кристаллов и их сростков. Сингония моноклинная. Обычно белый, бывает окрашен в светлые тона; блеск стеклянный, перламутровый, шелковистый; прозрачный или просвечивает; спайность в одном направлении весьма совершенная, в другом средняя; твердость 2; плотность 2,3. Используется в строительстве, в химической промышленности, медицине и др. Месторождения многочисленны, например: Урал, Северный Кавказ.

Класс фосфатов. Наиболее распространенным минералом является апатит Са5[РO4]3(F,ОН,Cl) (содержание фтора, хлора и гидроксильной группы колеблется). Встречается в виде кристаллических агрегатов и отдельных кристаллов гексагональной сингонии. Цвет бесцветный, чаще бледно-зеленый и зеленовато-голубой; блеск на гранях стеклянный, на изломе жирный; излом неровный; спайность несовершенная; твердость - 5; плотность - 3,2. Происхождение магматическое. Широко используется для производства фосфатных удобрений и в химической промышленности. Крупные месторождения в Хибинах, в Прибайкалье.

В поверхностных условиях возникает скрытокристаллический минерал того же состава - фосфорит. Образует землистые агрегаты, конкреции, псевдоморфозы по органическим остаткам. Цвет серый до темно-бурого; при трении выделяет специфический запах. Обычно содержит примесь песчаных и глинистых частиц, представляя собой уже породу. Образуется в бассейнах в результате жизнедеятельности и последующей переработки организмов. Используется, как и апатит, для производства удобрений и в химической промышленности. Месторождения многочисленны в европейской части России, в Казахстане и др.

Класс силикатов. Минералы этого класса широко распространены в земной коре (свыше 78%). Они образуются преимущественно в эндогенных условиях, будучи связаны с различными проявлениями магматизма и с метаморфическими процессами. Лишь немногие из них возникают в экзогенных условиях. Многие минералы этого класса являются породообразующими магматических и метаморфических горных пород, реже осадочных.

Силикаты характеризуются сложным химическим составом и внутренним строением. Частичная замена четырехвалентных ионов кремния трехвалентными ионами алюминия приводит к возникновению у такого соединения некоторого дополнительного отрицательного заряда. Минералы с подобным строением называются алюмосиликатами. Примером минерала силиката является оливин - (Mg,Fe)2[SiO4], алюмосиликата - ортоклаз K[AlSi3O8]. Кремнекислородные и алюмокремнекислородные тетраэдры в пространстве могут различно сочетаться друг с другом, что определяет кристаллическую структуру минералов и лежит в основе их современной классификации. Например, породообразующий минерал оливин относится к островным силикатам, и его структура представляет изолированный тетраэдр [SiO4]4-, присоединяющий ионы железа и магния.

Тетраэдры могут образовывать цепочечные, ленточные и слоевые структуры с соответствующими радикалами (рис. 2.3). Трехмерно соединяясь в пространстве через ионы кислорода, кремнекислородные тетраэдры создают структуру, называемую каркасной. Отрицательный заряд алюмокремнекислородных тетраэдров обеспечивает присоединение к каркасной структуре катионов и образование каркасных алюмосиликатов. К ним относятся, например, полевые шпаты.

 

Структура силикатов

Рис. 2.3  Структура силикатов, образованных кремнекислородными тетраэдрами:

а - кольцевая с кремнекислородным радикалом [Si6O18]12-; б - цепочечная с кремнекислородным радикалом [Si2O6]4-; в - ленточная с кремнекислородным радикалом [Si4O11]6-; г - слоевая с кремнекислородным радикалом [Si4O10]4-

 

Внутренняя структура силикатов и алюмосиликатов в значительной степени обусловливает их свойства: минералы с островной структурой, характеризующейся плотной упаковкой ионов, часто образуют изометричные кристаллы, обладают большой твердостью, плотностью и несовершенной спайностью. Минералы с линейно вытянутыми структурами (цепочечными и ленточными) образуют призматические кристаллы, обладающие хорошо выраженной спайностью в двух направлениях вдоль длинной оси структуры. Минералы с слоевой структурой образуют таблитчатые кристаллы с весьма совершенной спайностью, параллельной «слоям» структуры.

Островные силикаты. Оливин, или перидот, (Mg,Fe)2[SiO4], член изоморфного ряда минералов форстерит (бесцветный) Mg2[SiO4] и фаялит (черный) Fe2[SiO4]. Встречается обычно в виде зернистых агрегатов или отдельных зерен, вкрапленных в породы. Сингония ромбическая.

Цепочечные и ленточные силикаты и алюмосиликаты. Цепочечной структурой обладают минералы группы пироксенов, а ленточной - амфиболов. Они близки по свойствам, но пироксены образуют относительно короткие восьмигранные призматические кристаллы и углы между направлениями спайности у них составляют 87º (93º). Минералам группы амфиболов свойственны длинностолбчатые, игольчатые или волокнистые шестигранные кристаллы, спайность у них более совершенная и ее плоскости располагаются под углом 124º (56º) друг к другу.

В качестве примера минералов группы пироксенов рассмотрим гиперстен (силикат) и авгит (алюмосиликат).

Гиперстен (Fe,Mg)2[Si2O6] относится к сравнительно бедным оксидам кремния пироксенам и представляет собой изоморфную смесь молекул Mg2 [Si2O6] и Fe2 [Si2O6]. Присутствует главным образом в ультраосновных и основных магматических породах. Сингония моноклинная (псевдоромбическая). Цвет серовато-черный с зеленоватым оттенком, коричневато-зеленый; блеск стеклянный, иногда металловидный; твердость 5,5-6; плотность 3,4-3,5.

Авгит (Ca,Na) (Mg,Fe2+,A,Fe3+) [(Si,Al)2O6] встречается в кристаллических агрегатах, реже в виде короткостолбчатых кристаллов моноклинной сингонии. Цвет зеленовато-черный и черный; блеск стеклянный; твердость 5-6,5; плотность 3,2-3,6.

Одним из наиболее распространенных минералов группы амфиболов является роговая обманка (Ca,Na)2(Mg,Fe2+)4(Al,Fe3+) (OH)2[(Si,Al)4O11]2. По свойствам близка к авгиту, отличаясь формой кристаллов и взаимным расположением плоскостей спайности (см. выше), а также несколько меньшей плотностью - 3,1-3,4.

Класс слоевых силикатов. К листовым (слоевым) силикатам и алюмосиликатам относится большое количество минералов, из которых многие являются породообразующими магматических, метаморфических и глинистых осадочных горных пород. Кристаллизуются в моноклинной сингонии. Обладают весьма совершенной спайностью в одном направлении, параллельном «листам» кристаллической структуры, и небольшой твердостью (1-4).

Наиболее распространенными минералами этой структурной группы являются слюды, зерна которых встречаются во многих магматических и метаморфических породах; в жилах отдельные кристаллы слюд достигают в сечении нескольких квадратных метров. Происхождение магматическое, гидротермальное, метаморфическое.

Биотит K(Mg,Fe)3(OH,F)2[AlSi3O10]. Цвет черный, бурый, иногда зеленоватый; блеск стеклянный, местами перламутровый; твердость 2-3; плотность 3-3,2. Как у всех слюд, листочки, отделяющиеся по спайности, упругие.

Мусковит KAl2(OH)2[AlSi3O10] по многим свойствам близок к биотиту, но имеет почти бесцветную окраску со светло-розовым или серым оттенком, прозрачен в тонких листочках; плотность 2,7-3,1. Используется в электропромышленности, радиотехнике, приборостроении, для изготовления огнестойких строительных материалов, красок, смазочных материалов и др. Наиболее крупные месторождения найдены в Карелии и Восточной Сибири.

При гидротермальных процессах и метаморфизме основных и ультраосновных магматических пород (см. ниже), а также карбонатных осадочных пород образуются многие минералы той же структурной группы. Ниже остановимся на наиболее распространенных из них.

Тальк Mg3(OH)2[Si4O10] образует кристаллические агрегаты, реже отдельные крупные кристаллы и их сростки. Цвет белый, светло-зеленый; блеск стеклянный, перламутровый, у плотных мелкозернистых агрегатов матовый; листочки, отделенные по спайности, гибкие, неупругие; твердость 1 (на ощупь жирный); плотность 2,8. Широко используется как огнеупорный материал, при изготовлении изоляторов, в парфюмерии и пр. Крупные месторождения - на Урале, в Восточном Саяне.

Серпентин (змеевик) Mg6(OH)8[Si4O10] встречается обычно в виде плотных скрытокристаллических разностей. Тонковолокнистая разновидность называется хризоасбестом. Цвет светло-зеленый, желто-зеленый до черного, часто пятнистый, у хризоасбеста золотистый, отдельные волокна белые; блеск стеклянный, жирный, у хризоасбеста шелковистый; твердость 2-4; плотность 2,5-2,7. Хризоасбест используется для изготовления огнестойких и теплоизоляционных материалов. Месторождения известны на Урале, в Саянах и др.

Хлориты - минералы, представляющие собой изоморфный ряд соединений состава Мg6(ОН)8[Si4O10] и Mg4Al2(OH)8(Al2Si2O10], в которых Mg2+ и А13+ могут замещаться соответственно Fe2+ и Fe3+. Название этих минералов связано с их зеленой до зелено-черной окраской. Встречаются обычно в виде плотных кристаллических агрегатов, реже в виде отдельных кристаллов. Блеск стеклянный, местами перламутровый; листочки отделяющиеся по спайности, гибкие неупругие; твердость 2-3; плотность 2,6-2,9.

К листовым силикатам относится ряд минералов осадочного происхождения, образующихся при выветривании преимущественно магматических и метаморфических пород. Составляют основную часть глинистых пород. Из этих минералов наибольшим распространением пользуется каолинит Al4(OH)8[Si4O10], образующий землистые агрегаты. Цвет белый; блеск агрегатов матовый; излом землистый; твердость 1 (на ощупь жирный); плотность 2,6; легко поглощает влагу, намокая, становится пластичным. Употребляется в керамическом производстве, строительном деле, бумажной промышленности и др. Месторождения многочисленны: на Украине, Урале, Кавказе и в других местах.

В морских бассейнах образуется глауконит K(Fe,Al,Mg)3(OH)2[AlSi3O10nH2O (воды до 5-13%), относимый к гидрослюдам. Встречается в виде мелких зернышек неправильной формы (песчинок) или в виде мелкорассеянного цемента в песчаных и глинистых осадочных породах. Цвет зеленый до темно-зеленого; блеск обычно матовый; твердость 2-3; плотность 2,2-2,8.

Класс каркасных силикатов. Из каркасных алюмосиликатов рассмотрим минералы группы полевых шпатов. Почти все они характеризуются сравнительно светлой окраской, просвечивают по краю, твердость их около 6; плотность 2,5-2,75.

Минералы группы полевых шпатов пользуются широким распространением в земной коре, составляя в ней около 50%. Являются породообразующими многих магматических и метаморфических горных пород. В трещинах образуют крупные кристаллы. Для всех полевых шпатов характерна спайность совершенная или средняя в двух направлениях под углом, близким к 90º. По химическому составу полевые пшаты делятся на две подгруппы: 1) калиевые (калинатровые, или щелочные) полевые шпаты; 2) известково-натровые (кальциево-натровые) полевые шпаты, или плагиоклазы, представляющие непрерывный изоморфный ряд Na[AlSi3O8] и Са[Al2Si2O8].

Из первой подгруппы наиболее распространен ортоклаз К[А1Si3О8]. Кристаллизуется в моноклинной сингонии. Цвет от бесцветного (санидин), белого, светло-серого до разных оттенков розового и красно-желтого; спайность в двух направлениях под углом 90º (отсюда и название минерала - прямоколющийся).

Минерал того же состава, но кристаллизующийся в триклинной сингонии, называется микроклином. По внешним признакам микроклин неотличим от ортоклаза, и только его голубовато-зеленая разновидность - амазонит - по цвету легко отличается от других полевых шпатов.

Калиевые полевые шпаты (особенно микроклин) из пегматитовых жил используются в керамической и стекольной промышленности.

В подгруппу плагиоклазов входят минералы, представляющие, как сказано выше, изоморфный ряд, в котором происходит сложное замещение разновалентных ионов Na+ - Са2+ и А13+ - Si4+, что приводит к уменьшению содержания оксида кремния от чисто натриевого минерала альбита к кальциевому анортиту. Среди плагиоклазов по количеству оксида кремния выделяют кислые, средние и основные минералы.

Плагиоклазы кристаллизуются в триклинной сингонии, по свойствам близки друг к другу и визуально обычно не разделяются. Исключение составляет лабрадор, у которого на сером фоне хорошо видны синие и зеленые переливы. Плагиоклазы макроскопически мало отличаются и от калиевых полевых шпатов. Иногда их можно различить по окраске: плагиоклазы преимущественно белые, серые, зеленовато-серые, калиевые полевые шпаты белые, светло-серые, розовые и желтые разных оттенков.

При изучении минералов важно выяснить условия их образования и характер минеральных скоплений. Это позволяет устанавливать парагенетические ассоциации минералов, т.е. совместное нахождение минералов, образующихся на той или иной стадии одного и того же процесса в сходных физико-химических условиях.

 

2.6 Генезис минералов

 

Процессы минералообразования для удобства поделены на две главные генетические группы: 1) эндогенные, протекающие за счет внутренней тепловой энергии Земли; 2) экзогенные, совершающиеся за счет внешней (солнечной или космической) энергии, получаемой поверхностью Земли; источником вещества для протекания экзогенных процессов являются обнажившиеся на поверхности Земли различные горные породы и руды.

При попадании продуктов эндогенных и экзогенных процессов минералообразования в более глубокие зоны земной коры минералы могут претерпевать существенные превращения (метаморфизм). Продукты глубинного метаморфизма (регионального метаморфизма) широко представлены в составе земной коры. Среди эндогенных процессов минералообразования главными являются магматические, пегматитовые и пневматолитово-гидротермальные.

Магматические процессы. Магмой называется сложный по составу расплав, содержащий многие химические элементы и их соединения, образующийся в глубинных частях Земли или других планет. Особую роль в магме играют кремнекислородные соединения и поэтому магму часто называют силикатным расплавом, главными составляющими которого являются оксиды кремния, алюминия, железа, магния, кальция, натрия и калия. Остальные элементы присутствуют в магме в существенно меньших количествах. Кроме того, в магме растворены газообразные и летучие вещества (вода, углекислота, углеводороды, сернистые соединения и др.), принимающие активное участие в процессах образования минералов. Минералы, образующиеся при застывании магмы, представляют собой соединения, состоящие из тех химических элементов, которые в ней содержались. При движении отдельных блоков земной коры магма выжимается по трещинам или ослабленным зонам на поверхность. При этом магма оказывается в областях меньшего давления, где происходит потеря магмой большей части летучих соединений, растворенных в ней. Магма превращается в лаву. При застывании последней возникают группы минералов эффузивных или вулканических пород. Обе группы магматических пород получили название изверженных, т.е. образовавшихся из расплавов. Огромные массы изверженных горных пород формировались практически на всех этапах геологического развития Земли.

Последовательность кристаллизации минералов из магмы при охлаждении последней зависит как от ее исходного состава, так и от условий кристаллизации. При движении магмы от области ее генерации к поверхности сульфидные комплексы могут отщепляться от нее и кристаллизоваться независимо от других составляющих силикатных расплавов. Таким путем формировались руды медно-никелевых месторождений. От магмы могут отщепляться также некоторые минералы, принадлежащие классу оксидов, образуя, например, хромитовые залежи, часто содержащие элементы платиновой группы. Помимо образования сульфидных и окисных минералов, на ранних стадиях кристаллизации магмы выделяется также островной силикат оливин - (Mg,Fe)2SiO4, являющийся одним из главных породообразующих минералов в ультраосновных и основных изверженных породах.

Общая схема процесса кристаллизации магмы может быть описана так называемым реакционным рядом Боуэна, суть которого сводится к последовательному образованию при падении температуры все более кислых (т.е. обогащенных кремнеземом) темноцветных и светлоокрашенных минералов (табл. 2.5).

 

Таблица 2.5

Образование минералов при остывании магмы

 

Образование минералов при остывании магмы

Темноцветные

Светлоокрашенные

Оливин (Mg,Fe)2SiO4

Анортит CaAl2Si2O8

Пироксен Ca(Mg,Fe)Si2O6

 

Амфибол Ca2(Mg,Fe)5[Si8O22](OH)2

 

Биотит K(Mg,Fe)2[AlSi3O10](OH)2

 

Мусковит KAl2[AlSi3O10](OH)2

Ортоклаз KAlSi3O8

Альбит NaAlSi3O8

Кварц SiO2

 

Таким образом, в процессе кристаллизации магмы увеличение ее кремнекислотности при одновременном возрастании роли летучих приводит к образованию на поздних стадиях все более кислых пород.

Некоторые типы магматических пород залегают в форме жил или прожилков. Они образуются в результате заполнения трещин различными минеральными веществами. В трещины из глубинных частей земной коры могли проникать остаточные расплавы, разнообразные пары и газы (флюиды) или горячие водные растворы.

В соответствии с этим жилы по типу источника вещества их слагающих подразделяются на пегматитовые, образовавшиеся в результате собственно магматического процесса на одной из заключительных стадий его протекания, пневматолитовые, в образовании которых приняли участие флюиды, входившие в состав магмы, и гидротермальные, сформированные из горячих водных растворов, поступавших из глубинных частей земной коры.

Пегматитовые процессы. В конце основной стадии магматической кристаллизации остаточный расплав заметно обогащается кремнеземом, глиноземом, щелочами и летучими компонентами. Наряду с этим он также концентрирует в себе значительные количества редких (Mo, Zr, Hf, Ta, Nb, Th, U и др.) и рассеянных элементов (Li, Be, B, F, Rb, Cs,), размеры ионных радиусов которых не позволили им войти в структуры обычных породообразующих минералов. Обилие легколетучих компонентов (главным образом Н2О) обуславливает низкую вязкость остаточного расплава, из-за чего последний может легко проникать в трещины и полости вмещающих его пород. Дальнейшая кристаллизация такого расплава приводит к образованию пегматитовых жил. Пегматиты обычно образуются в ассоциации с кислыми (граниты) или щелочными (нефелиновые сиениты) породами. По своему минеральному составу пегматиты близки к материнским породам - главная их масса состоит из тех же породообразующих минералов, однако число и распространенность второстепенных минералов в пегматитах в некоторых случаях существенно больше, чем в материнских породах. Так, например, в гранитных пегматитах кроме породообразующих минералов (полевые шпаты, кварц, слюды) иногда наблюдаются фтор и борсодержащие соединения (топаз - Al2[SiO4](F,OH)2, турмалин - Na(Mg,Fe)3Al6[Si6O18] (BO3)3(OH)4), минералы бериллия (берилл - Be3Al2Si6O18), лития (литиевые пироксены и слюды), редкоземельных элементов, ниобия, тантала и др. Большинство пегматитов обладает крупнозернистой структурой; отдельные минералы в них иногда достигают гигантских размеров. Во многих пегматитовых жилах наблюдается зональное строение, выраженное в закономерном распределении минералов.

 

Пегматитовые минеральные ассоциации

шерл, альбит

аквамарин, кварц, мусковит

топаз, альбит, кварц

топаз, полевой шпат

турмалин, лепидолит

 

Особенностью пегматитового минералообразования является то, что протекает оно в трещинах при медленном падении температуры расплава и создаются условия для роста крупных кристаллов. Наиболее крупные выделения минералов характерны для внутренних зон блокового строения. Здесь кристаллы (блоки) полевых шпатов могут достигать размеров до 1,5 м шириной и 3 м длиной, в таких зонах обнаружены гигантские пластины слюды (мусковита) площадью до 2,5 м2, кристаллы берилла массой до 15 т, кристаллы сподумена более 12 м в длину.

Пневматолито-гидротермальные процессы. Явление пневматолиза (от греческого «пневма» - газ) протекает в тех случаях, когда вследствие перепада давлений происходит вскипание остаточного расплав-раствора и вся жидкость переходит в газообразную фазу, вступая при этом в реакцию с ранее выделившимися твердыми минералами. Если отщепление летучих, в том числе и паров воды, на заключительной стадии кристаллизации магмы или образования пегматитов происходило на больших или средних глубинах, то высвободившиеся при этом летучие соединения в газообразной форме могли вступать в химические реакции с вмещающими породами, производя так называемый контактовый метаморфизм. Степень метаморфизма и состав получающихся продуктов определялись главным образом химической активностью флюида и составом реагирующей с ним породы. Наиболее интенсивные изменения установлены для зон контактов гранитных массивов с известковистыми породами. В результате разнообразных реакций замещения (метасоматических реакций) в этом случае возникают породы, получившие название скарны. Источниками вещества для их формирования послужили как вмещающие породы, так и некоторые составляющие части магмы. С образованием скарнов нередко связаны крупные месторождения железа, вольфрама, молибдена и некоторых других металлов.

Если отщепление летучих в магматическом очаге или пегматитовых телах происходило на относительно малых глубинах, то дальнейшая миграция (удаление от магматического очага) такого флюида могла привести, в конечном итоге, к образованию другого типа жильных тел. Вода может находиться в жидком состоянии при температуре ниже 374,5ºС. В тех случаях, когда формирование минерального вещества происходило выше критической точки воды (374,5ºС), т.е. активную роль в этом процессе играли пар и флюиды, принято говорить о собственно пневматолитовом генезисе. Если формирование минерального вещества происходило ниже критической точки воды, т.е. вода в качестве самостоятельной жидкой фазы играла существенную роль в процессе образования минеральных ассоциаций, говорят о гидротермальном генезисе.

Минеральный состав пневматолитовых и гидротермальных жил крайне разнообразен. Жилы в большинстве случаев сложены кварцем, карбонатами, которые заключают в себя скопления самородных элементов (Au, Ag, Bi), сульфидов, селенидов и теллуридов таких элементов, как Mo, Bi, Cu, Zn, Ag, Pb, Sb, Hg, оксидов вольфрама, Mo, Sn, U и некоторые другие минералы. Именно с пневматолитово-гидротермальными процессами связано образование крупных месторождений редких (W, Mo, Sn, Bi, Sb, As, Hg), цветных (Cu, Pb, Zn), благородных (Au, Ag) и радиоактивных (U, Th) металлов.

В соответствии с температурой образования гидротермальные месторождения подразделяются на высокотемпературные (гипотермальные), возникшие при температурах 400-300ºС, среднетемпературные (мезотермальные) с температурами образования минеральных ассоциаций от 300 до 150ºС и низкотемпературные (эпитермальные), формирующиеся при температурах 150-50ºС. Гидротермальные месторождения, расположенные вблизи магматического очага - обычно высокотемпературные, а расположенные на удалении от магматического очага - низкотемпературные.

Процессы диагенеза. Диагенез протекает в толще осадочных пород при их накоплении и уплотнении. Перектисталлизации подвергаются главным образом однородные мелкозернистые осадки, состоящие из легкорастворимых минералов. Пример - диагенез рифовых образований. Под действием СО2, освобождающейся при разложении органического вещества, СаСО3 скелетов частично растворяется и после выделения углекислоты выпадает заново уже в кристаллической форме. Цементация связана с выпадением в осадок различных химических соединений, цементирующих зёрна осадков, заполняя поры, пустоты, скрепляя частицы. Таким цементирующим веществом чаще всего является кремнезём в различных модификациях (кварц, опал, халцедон), окислы железа, карбонаты, фосфаты. Обезвоживание осадка происходит в результате выжимания воды из нижних пластов в верхние вследствие давления толщ осадка. При этом происходит и процесс дегидратации минералов, богатых водой, и их перекристаллизация.

Экзогенные процессы минералообразования. Большая часть экзогенных процессов минералообразования, протекающих на Земле, более доступна нашему наблюдению, чем эндогенные процессы. Главными среди них являются разнообразные процессы выветривания, осадконакопления.

 

Продолжение

 

 

uralgidrogeo@narod.ru